Epidemiologist

Epidemiologist
Epidemiologists help with study design, collection and statistical analysis of data, and interpretation and dissemination of results (including peer review and occasional systematic review). Epidemiology has helped develop methodology used in clinical research, public health studies and, to a lesser extent, basic research in the biological sciences

Jumat, 24 Januari 2014

Bias

Bias
Bias adalah sebuah penyajian bahan yang dipenuhi prasangka. Ia juga berarti kesalahan yang konsisten dalam memperkirakan sebuah nilai. Ada dua tipe bias: bias sampel dan bias pengukuran.

Bias sampel

Sampel adalah sekumpulan satuan yang dipilih untuk diukur dari kelompok yang lebih besar (populasi). Bias sampel terjadi ketika sampel yang digunakan tidak mewakili populasi atau tidak sesuai dengan pertanyaan yang diajukan.

Faktor-faktor yang menyebabkan bias sampel adalah ukuran sampel dan seleksi sampel.  Ukuran sampel harus cukup besar agar dipeoleh nilai rata-rata yang baik. Sebagai contoh, untuk menentukan tinggi rata-rata mahasiswa di ruang kelas, seberapa banyak mahasiswa yang harus diukur untuk mendapatkan perkiraan terbaik? Apakah bisa dikatakan teliti jika kita hanya mengambil sampel dari tiga orang mahasiswa saja?

Sampel juga harus memiliki komposisi yang mencerminkan komposisi populasi. Faktor seperti lokasi, usia, gender, etnisitas, kebangsaan, dan lingkungan hidup dapat mempengaruhi data yang dikumpulkan. Contoh bias seleksi sampel adalah sebagai berikut: seorang peneliti ingin menemukan tinggi rata-rata mahasiswa di ruang kelas. Ada beberapa mahasiswa yang ikut pertandingan basket sehingga harus pulang lebih awal. Kelompok mahasiswa ini dijadikan sampel oleh peneliti tersebut. Para pemain basket umumnya berbadan tinggi sehingga bila mereka dijadikan sampel, akibatnya muncul rata-rata yang lebih tinggi dari sebenarnya ada bila kita mengukur populasi secara keseluruhan. Dalam kasus ini tentu akan lebih baik mengukur seluruh mahasiswa di ruang kelas (populasi). Namun hal ini tidak dapat dilakukan bila kita bicara mengenai rata-rata tinggi penduduk di suatu negara atau provinsi, karena jumlahnya sangat banyak dan tidak mungkin dilakukan pengukuran tinggi secara keseluruhan.

Eksperimen yang baik mengendalikan faktor-faktor ini dengan memakai  sampel yang diambil secara acak sehingga setiap individu memiliki kemungkinan yang sama untuk terpilih. Contohnya dengan melempar dadu atau melempar koin. Cara lain meminimalkan bias seleksi sampel adalah pembatasan pertanyaan yang diajukan pada kelompok yang disampel.

Bias pengukuran


Bias pengukuran berurusan dengan masalah apakah metode pengumpulan data yang dipilih telah sesuai sehingga data yang dikumpulkan merupakan yang paling mewakili kenyataan? Untuk mengevaluasi teknik pengumpulan data, pengukuran harus dilakukan dengan seteliti mungkin. Tidak boleh ada tambahan pada lingkungan yang dapat mempengaruhi hasil. Selain itu, eksperimen harus dirancang untuk mengisolasi pengaruh dari banyak faktor lainnya.

Contoh pengukuran yang tidak akurat adalah pengukuran tinggi dimana tinggi orang diukur tidak dari nol, tapi dari satu. Akibatnya pengukuran menghasilkan nilai lebih tinggi dari realitas.


Contoh pengaruh lingkungan yang menyebabkan bias pada pengukuran tinggi adalah mengukur tinggi orang yang memakai sepatu. Sepatu menyebabkan pertambahan tinggi dan ukuran tinggi sepatu tiap orang berbeda, akibatnya hasil pengukuran juga tidak sesuai dengan realitas.

Tidak ada komentar:

Posting Komentar